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Technical Reference on Hydrogen Compatibility of Materials 

Aluminum Alloys: 

Heat-Treatable Alloys, 2XXX-series (code 3210) 

1. General 
It is generally accepted that a metal must adsorb hydrogen before the hydrogen can degrade 

the properties of the metal. The thermodynamics and kinetics of the interactions between gaseous 
hydrogen and aluminum alloys are not well understood. Therefore, the effects of gaseous 
hydrogen on fracture in aluminum alloys has not been adequately addressed in the literature.  

Despite an incomplete understanding of the fundamental thermodynamics and kinetics of 
hydrogen-aluminum interactions, all of the available data suggest that the structural properties of 
aluminum alloys are not affected by gaseous hydrogen if moisture is absent [1, 2]. Studies of the 
micromechanics of deformation in aluminum, on the other hand, show that deformation is 
strongly affected by hydrogen [3, 4], demonstrating that hydrogen may affect the mechanical 
properties of aluminum alloys. Indeed, aluminum alloys can be susceptible to stress corrosion 
cracking [5, 6], for which hydrogen-assisted fracture is one mechanistic interpretation of 
property degradation [1, 5, 7]. 

More work is necessary to determine the limiting behavior of 2XXX-series in gaseous 
hydrogen. Nevertheless, the available data from the stress-corrosion-cracking literature appears 
to provide a more conservative assessment of hydrogen-assisted fracture in aluminum alloys than 
gaseous hydrogen exposures.  

1.1 Composition and microstructure 
The Aluminum Association (AA) designations are typically used for aluminum alloys and 

the materials definitions are provided in the AMS specifications (Aerospace Material 
Specification, also called SAE-AMS). The 2XXX-series alloys are the aluminum-copper, 
precipitation-strengthening aluminum alloys, although engineering alloys include controlled 
amounts of other transition metals and silicon. Several common varieties are given in Table 
1.1.1.  

The alloy temper (i.e., specific heat treatment) is specified after the AA designation, such as 
2014-T6. Mill tempers often include stress relief and may include several numbers, such as 
T6511. The T6 temper represents the peak-aged condition and is the most common for the 
2XXX-series alloys. The T8 tempers are strain-hardened, then precipitation-strengthened. 
Common tempers for aluminum alloys are specified in AMS 2770 thru 2772. 

1.2 Common designations  
UNS A92014 (2014), UNS A92024 (2024), UNS A92219 (2219), UNS A92224 (2224) 
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2. Permeability, Diffusivity and Solubility  
The solubility and diffusivity of hydrogen in pure aluminum are reviewed in Refs. [8, 9]; 

little data for engineering alloys is reported in the literature. The data for pure aluminum is 
summarized in the section of this Technical Reference on pure aluminum alloys.  

3. Mechanical Properties: Effects of Gaseous Hydrogen 

3.1 Tensile properties 

3.1.1 Smooth tensile properties 
There are few published data for 2XXX-series aluminum alloys in gaseous hydrogen. The 

limited data [10] show a slight increase in ductility for aluminum alloys when tested in high-
pressure gas compared to tests in air, Table 3.1.1.1. The apparent improvement in ductility is 
likely related to removal of the environmental condition associated with atmospheric moisture.  

3.1.2 Notched tensile properties  
No known published data in hydrogen gas. 

3.2 Fracture mechanics  
The fracture toughness (KIC) and threshold stress intensity factor (KTH) of 2219-T87 

aluminum are reported by Walter and Chandler in 34.5 MPa gaseous hydrogen and helium at 
room temperature and temperature of 144 K [11]. Their 2219-T87 material was obtained as plate 
with a yield strength of 390 MPa. They found essentially no difference in values of fracture 
reisstance measured in helium and hydrogen: both KIC and KTH values are reported to be about 
30 MPa m1/2 at room temperature, and about 40 MPa m1/2 at 144 K.  

3.3 Fatigue 
No known published data in hydrogen gas. 

3.4 Creep 
No known published data in hydrogen gas. 

3.5 Impact 
No known published data in hydrogen gas. 

3.6 Disk rupture testing 
No known published data in hydrogen gas. 

4. Fabrication 

4.1 Primary processing 
Relatively large hydrogen contents in aluminum alloys can result from casting processes due 

to the high solubility of hydrogen in liquid aluminum [12]; this residual hydrogen can be much 
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larger than dissolved from exposure to high-pressure gaseous hydrogen near room temperature. 
There is a significant body of literature that addresses this issue for castings [13].  

4.2 Heat treatment 
Vacancies appear to play an important role in trapping and transport of hydrogen in 

aluminum alloys [8, 9], therefore the high concentrations of vacancies associated with tempering 
are likely to have a substantial effect on hydrogen transport in precipitation-strengthened 
aluminum alloys. It is unclear, however, if trapped hydrogen plays a significant role on the 
micromechanisms of hydrogen-assisted fracture in aluminum alloy exposed to gaseous 
hydrogen.  
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Table 1.1.1. Compositional ranges (wt%) of several common 2XXX-series aluminum alloys 
[14]; additional and modified requirements are common for specific applications. 

UNS No  
Aluminum 
Association 
Designation 

Al Cu  Mg  Mn  Zn Cr Ti V  Zr  Si  Fe 

A92014 2014 Bal 5.0 
3.9 

0.80 
0.20 

1.2 
0.40 

0.25 
max 

0.10 
max 

0.15 
max — — 1.2  

0.50 
0.70 
max 

A92024 2024 Bal 4.9 
3.8 

1.8 
1.2 

0.90 
0.30 

0.25 
max 

0.10 
max 

0.15 
max — — 0.50 

max 
0.50  
max 

A92224 2224 Bal 4.4 
3.8 

1.8 
1.2 

0.90 
0.30 

0.25 
max 

0.10 
max 

0.15 
max — — 0.12 

max 
0.15  
max 

A92219 2219 Bal 6.8 
5.8 

0.02 
max 

0.40 
0.20 

0.10 
max — 0.10 

0.02 
0.10 
0.25 

0.05 
0.15 

0.20 
max 

0.30 
max 

 

Table 3.1.1.1. Smooth tensile properties of 2XXX-series aluminum alloys tested at room 
temperature in high-pressure helium and hydrogen gas. 

Material Thermal 
precharging 

Test 
environment 

Strain 
rate 
(s-1) 

Sy 
(MPa) 

Su 
(MPa) 

Elu 
(%) 

Elt 
(%) 

RA 
(%) Ref. 

None Air 269 338 — 17 48 
None 69 MPa He 227 296 — 18 57 2011 
None 69 MPa H2 

 
— 

220 296 — 17 58 
[10] 

None Air 358 489 — 15 33 
None 69 MPa He 324 441 — 19 36 2024 
None 69 MPa H2 

— 
310 427 — 18 35 

[10] 

 
 
 
 




